1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
use std::fmt::{self, Display, Formatter};
use crate::codetables::{grib2::*, *};
/// Parameter of the product.
///
/// In the context of GRIB products, parameters refer to weather elements such
/// as air temperature, air pressure, and humidity, and other physical
/// quantities.
///
/// With [`is_identical_to`], users can check if the parameter is identical to a
/// third-party code, such as [`NCEP`].
///
/// [`is_identical_to`]: Parameter::is_identical_to
#[derive(Debug, PartialEq, Eq)]
pub struct Parameter {
/// Discipline of processed data in the GRIB message.
pub discipline: u8,
/// GRIB master tables version number.
pub centre: u16,
/// Parameter category by product discipline.
pub master_ver: u8,
/// GRIB local tables version number.
pub local_ver: u8,
/// Identification of originating/generating centre.
pub category: u8,
/// Parameter number by product discipline and parameter category.
pub num: u8,
}
impl Parameter {
/// Looks up the parameter's WMO description.
///
/// # Examples
///
/// ```
/// // Extracted from the first submessage of JMA MSM GRIB2 data.
/// let param = grib::Parameter {
/// discipline: 0,
/// centre: 34,
/// master_ver: 2,
/// local_ver: 1,
/// category: 3,
/// num: 5,
/// };
/// assert_eq!(param.description(), Some("Geopotential height".to_owned()))
/// ```
pub fn description(&self) -> Option<String> {
CodeTable4_2::new(self.discipline, self.category)
.lookup(usize::from(self.num))
.description()
}
/// Checks if the parameter is identical to a third-party `code`, such as
/// [`NCEP`].
///
/// # Examples
///
/// ```
/// use grib::codetables::NCEP;
///
/// // Extracted from the first submessage of JMA MSM GRIB2 data.
/// let param = grib::Parameter {
/// discipline: 0,
/// centre: 34,
/// master_ver: 2,
/// local_ver: 1,
/// category: 3,
/// num: 5,
/// };
/// assert!(param.is_identical_to(NCEP::HGT));
/// ```
pub fn is_identical_to<'a, T>(&'a self, code: T) -> bool
where
T: TryFrom<&'a Self>,
T: PartialEq,
{
let self_ = T::try_from(self);
self_.is_ok_and(|v| v == code)
}
pub(crate) fn as_u32(&self) -> u32 {
(u32::from(self.discipline) << 16) + (u32::from(self.category) << 8) + u32::from(self.num)
}
}
#[derive(Debug, PartialEq, Eq)]
pub struct ForecastTime {
pub unit: Code<grib2::Table4_4, u8>,
pub value: u32,
}
impl ForecastTime {
pub fn new(unit: Code<grib2::Table4_4, u8>, value: u32) -> Self {
Self { unit, value }
}
pub fn from_numbers(unit: u8, value: u32) -> Self {
let unit = Table4_4::try_from(unit).into();
Self { unit, value }
}
pub fn describe(&self) -> (String, String) {
let unit = match &self.unit {
Name(unit) => format!("{unit:#?}"),
Num(num) => format!("code {num:#?}"),
};
let value = self.value.to_string();
(unit, value)
}
}
impl Display for ForecastTime {
fn fmt(&self, f: &mut Formatter) -> fmt::Result {
write!(f, "{}", self.value)?;
match &self.unit {
Name(unit) => {
if let Some(expr) = unit.short_expr() {
write!(f, " [{expr}]")?;
}
}
Num(num) => {
write!(f, " [unit: {num}]")?;
}
}
Ok(())
}
}
#[derive(Debug, PartialEq, Eq)]
pub struct FixedSurface {
/// Use [CodeTable4_5] to get textual representation.
pub surface_type: u8,
pub scale_factor: i8,
pub scaled_value: i32,
}
impl FixedSurface {
pub fn new(surface_type: u8, scale_factor: i8, scaled_value: i32) -> Self {
Self {
surface_type,
scale_factor,
scaled_value,
}
}
pub fn value(&self) -> f64 {
if self.value_is_nan() {
f64::NAN
} else {
let factor: f64 = 10_f64.powi(-i32::from(self.scale_factor));
f64::from(self.scaled_value) * factor
}
}
/// Returns the unit string defined for the type of the surface, if any.
///
/// # Examples
///
/// ```
/// assert_eq!(grib::FixedSurface::new(100, 0, 0).unit(), Some("Pa"));
/// ```
pub fn unit(&self) -> Option<&str> {
// Tentative implementation; pattern matching should be generated from the
// CodeFlag CSV file.
let unit = match self.surface_type {
11 => "m",
12 => "m",
13 => "%",
18 => "Pa",
20 => "K",
21 => "kg m-3",
22 => "kg m-3",
23 => "Bq m-3",
24 => "Bq m-3",
25 => "dBZ",
26 => "m",
27 => "m",
30 => "m",
100 => "Pa",
102 => "m",
103 => "m",
104 => r#""sigma" value"#,
106 => "m",
107 => "K",
108 => "Pa",
109 => "K m2 kg-1 s-1",
114 => "Numeric",
117 => "m",
151 => "Numeric",
152 => "Numeric",
160 => "m",
161 => "m",
168 => "Numeric",
169 => "kg m-3",
170 => "K",
171 => "m2 s-1",
_ => return None,
};
Some(unit)
}
/// Checks if the scale factor should be treated as missing.
pub fn scale_factor_is_nan(&self) -> bool {
// Handle as NaN if all bits are 1. Note that this is i8::MIN + 1 and not
// i8::MIN.
self.scale_factor == i8::MIN + 1
}
/// Checks if the scaled value should be treated as missing.
pub fn value_is_nan(&self) -> bool {
// Handle as NaN if all bits are 1. Note that this is i32::MIN + 1 and not
// i32::MIN.
self.scaled_value == i32::MIN + 1
}
pub fn describe(&self) -> (String, String, String) {
let stype = CodeTable4_5
.lookup(usize::from(self.surface_type))
.to_string();
let scale_factor = if self.scale_factor_is_nan() {
"Missing".to_owned()
} else {
self.scale_factor.to_string()
};
let scaled_value = if self.value_is_nan() {
"Missing".to_owned()
} else {
self.scaled_value.to_string()
};
(stype, scale_factor, scaled_value)
}
}