1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
use helpers::RegularGridIterator;
pub use self::{
earth::EarthShapeDefinition,
gaussian::{compute_gaussian_latitudes, GaussianGridDefinition},
lambert::LambertGridDefinition,
latlon::LatLonGridDefinition,
polar_stereographic::PolarStereographicGridDefinition,
};
/// An iterator over latitudes and longitudes of grid points in a submessage.
///
/// This `enum` is created by the [`latlons`] method on [`SubMessage`]. See its
/// documentation for more.
///
/// [`latlons`]: crate::context::SubMessage::latlons
/// [`SubMessage`]: crate::context::SubMessage
#[derive(Clone)]
pub enum GridPointIterator {
LatLon(RegularGridIterator),
Lambert(std::vec::IntoIter<(f32, f32)>),
}
impl Iterator for GridPointIterator {
type Item = (f32, f32);
fn next(&mut self) -> Option<Self::Item> {
match self {
Self::LatLon(iter) => iter.next(),
Self::Lambert(iter) => iter.next(),
}
}
fn size_hint(&self) -> (usize, Option<usize>) {
match self {
Self::LatLon(iter) => iter.size_hint(),
Self::Lambert(iter) => iter.size_hint(),
}
}
}
/// An iterator over `(i, j)` of grid points.
///
/// This `struct` is created by the [`ij`] method. See its documentation for
/// more.
///
/// [`ij`]: LatLonGridDefinition::ij
#[derive(Clone)]
pub struct GridPointIndexIterator {
major_len: usize,
minor_len: usize,
scanning_mode: ScanningMode,
major_pos: usize,
minor_pos: usize,
increments: bool,
}
impl GridPointIndexIterator {
pub(crate) fn new(i_len: usize, j_len: usize, scanning_mode: ScanningMode) -> Self {
let (major_len, minor_len) = if scanning_mode.is_consecutive_for_i() {
(j_len, i_len)
} else {
(i_len, j_len)
};
Self {
major_len,
minor_len,
scanning_mode,
minor_pos: 0,
major_pos: 0,
increments: true,
}
}
}
impl Iterator for GridPointIndexIterator {
type Item = (usize, usize);
fn next(&mut self) -> Option<Self::Item> {
if self.major_pos == self.major_len {
return None;
}
let minor = if self.increments {
self.minor_pos
} else {
self.minor_len - self.minor_pos - 1
};
let major = self.major_pos;
self.minor_pos += 1;
if self.minor_pos == self.minor_len {
self.major_pos += 1;
self.minor_pos = 0;
if self.scanning_mode.scans_alternating_rows() {
self.increments = !self.increments;
}
}
if self.scanning_mode.is_consecutive_for_i() {
Some((minor, major))
} else {
Some((major, minor))
}
}
fn size_hint(&self) -> (usize, Option<usize>) {
let len = (self.major_len - self.major_pos) * self.minor_len - self.minor_pos;
(len, Some(len))
}
}
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
pub struct ScanningMode(pub u8);
impl ScanningMode {
/// Returns `true` if points of the first row or column scan in the `+i`
/// (`+x`) direction.
///
/// # Examples
///
/// ```
/// assert_eq!(
/// grib::ScanningMode(0b00000000).scans_positively_for_i(),
/// true
/// );
/// ```
pub fn scans_positively_for_i(&self) -> bool {
self.0 & 0b10000000 == 0
}
/// Returns `true` if points of the first row or column scan in the `+j`
/// (`+y`) direction.
///
/// # Examples
///
/// ```
/// assert_eq!(
/// grib::ScanningMode(0b00000000).scans_positively_for_j(),
/// false
/// );
/// ```
pub fn scans_positively_for_j(&self) -> bool {
self.0 & 0b01000000 != 0
}
/// Returns `true` if adjacent points in `i` (`x`) direction are
/// consecutive.
///
/// # Examples
///
/// ```
/// assert_eq!(grib::ScanningMode(0b00000000).is_consecutive_for_i(), true);
/// ```
pub fn is_consecutive_for_i(&self) -> bool {
self.0 & 0b00100000 == 0
}
/// Returns `true` if adjacent rows scans in the opposite direction.
///
/// # Examples
///
/// ```
/// assert_eq!(
/// grib::ScanningMode(0b00000000).scans_alternating_rows(),
/// false
/// );
/// ```
pub fn scans_alternating_rows(&self) -> bool {
self.0 & 0b00010000 != 0
}
pub(crate) fn has_unsupported_flags(&self) -> bool {
self.0 & 0b00001111 != 0
}
}
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
pub struct ProjectionCentreFlag(pub u8);
impl ProjectionCentreFlag {
/// Returns `true` if North Pole is on the projection plane. Otherwise (i.e.
/// if South Pole is on), returns `false`.
///
/// # Examples
///
/// ```
/// assert_eq!(
/// grib::ProjectionCentreFlag(0b00000000).contains_north_pole_on_projection_plane(),
/// true
/// );
/// ```
pub fn contains_north_pole_on_projection_plane(&self) -> bool {
self.0 & 0b10000000 == 0
}
/// Returns `true` if projection is bipolar and symmetric. Otherwise (i.e.
/// if only one projection centre is used), returns `false`.
///
/// # Examples
///
/// ```
/// assert_eq!(grib::ProjectionCentreFlag(0b00000000).is_bipolar(), false);
/// ```
pub fn is_bipolar(&self) -> bool {
self.0 & 0b01000000 != 0
}
#[allow(dead_code)]
pub(crate) fn has_unsupported_flags(&self) -> bool {
self.0 & 0b00111111 != 0
}
}
mod earth;
mod gaussian;
mod helpers;
mod lambert;
mod latlon;
mod polar_stereographic;