grib/grid/
gaussian.rs

1use super::{
2    helpers::{evenly_spaced_longitudes, RegularGridIterator},
3    GridPointIndexIterator, ScanningMode,
4};
5use crate::{
6    error::GribError,
7    helpers::{read_as, GribInt},
8};
9
10#[derive(Debug, PartialEq, Eq)]
11pub struct GaussianGridDefinition {
12    pub ni: u32,
13    pub nj: u32,
14    pub first_point_lat: i32,
15    pub first_point_lon: i32,
16    pub last_point_lat: i32,
17    pub last_point_lon: i32,
18    pub i_direction_inc: u32,
19    pub n: u32,
20    pub scanning_mode: ScanningMode,
21}
22
23const MAX_ITER: usize = 10;
24
25impl GaussianGridDefinition {
26    /// Returns the shape of the grid, i.e. a tuple of the number of grids in
27    /// the i and j directions.
28    pub fn grid_shape(&self) -> (usize, usize) {
29        (self.ni as usize, self.nj as usize)
30    }
31
32    /// Returns the grid type.
33    pub fn short_name(&self) -> &'static str {
34        "regular_gg"
35    }
36
37    /// Returns an iterator over `(i, j)` of grid points.
38    ///
39    /// Note that this is a low-level API and it is not checked that the number
40    /// of iterator iterations is consistent with the number of grid points
41    /// defined in the data.
42    pub fn ij(&self) -> Result<GridPointIndexIterator, GribError> {
43        if self.scanning_mode.has_unsupported_flags() {
44            let ScanningMode(mode) = self.scanning_mode;
45            return Err(GribError::NotSupported(format!("scanning mode {mode}")));
46        }
47
48        let iter =
49            GridPointIndexIterator::new(self.ni as usize, self.nj as usize, self.scanning_mode);
50        Ok(iter)
51    }
52
53    /// Returns an iterator over latitudes and longitudes of grid points in
54    /// degrees.
55    ///
56    /// Note that this is a low-level API and it is not checked that the number
57    /// of iterator iterations is consistent with the number of grid points
58    /// defined in the data.
59    pub fn latlons(&self) -> Result<RegularGridIterator, GribError> {
60        if !self.is_consistent_for_j() {
61            return Err(GribError::InvalidValueError(
62                "Latitudes for first/last grid points are not consistent with scanning mode"
63                    .to_owned(),
64            ));
65        }
66
67        let ij = self.ij()?;
68        let mut lat = compute_gaussian_latitudes_in_degrees(self.nj as usize)
69            .map_err(|e| GribError::Unknown(e.to_owned()))?;
70        if self.scanning_mode.scans_positively_for_j() {
71            lat.reverse()
72        };
73        let lat = lat.into_iter().map(|v| v as f32).collect();
74        let lon = evenly_spaced_longitudes(
75            self.first_point_lon,
76            self.last_point_lon,
77            (self.ni - 1) as usize,
78            self.scanning_mode,
79        );
80
81        let iter = RegularGridIterator::new(lat, lon, ij);
82        Ok(iter)
83    }
84
85    pub(crate) fn is_consistent_for_j(&self) -> bool {
86        let lat_diff = self.last_point_lat - self.first_point_lat;
87        !((lat_diff > 0) ^ self.scanning_mode.scans_positively_for_j())
88    }
89
90    pub(crate) fn from_buf(buf: &[u8]) -> Self {
91        let ni = read_as!(u32, buf, 0);
92        let nj = read_as!(u32, buf, 4);
93        let first_point_lat = read_as!(u32, buf, 16).as_grib_int();
94        let first_point_lon = read_as!(u32, buf, 20).as_grib_int();
95        let last_point_lat = read_as!(u32, buf, 25).as_grib_int();
96        let last_point_lon = read_as!(u32, buf, 29).as_grib_int();
97        let i_direction_inc = read_as!(u32, buf, 33);
98        let n = read_as!(u32, buf, 37);
99        let scanning_mode = read_as!(u8, buf, 41);
100        Self {
101            ni,
102            nj,
103            first_point_lat,
104            first_point_lon,
105            last_point_lat,
106            last_point_lon,
107            i_direction_inc,
108            n,
109            scanning_mode: ScanningMode(scanning_mode),
110        }
111    }
112}
113
114fn compute_gaussian_latitudes_in_degrees(div: usize) -> Result<Vec<f64>, &'static str> {
115    let lat: Option<Vec<_>> = compute_gaussian_latitudes(div)
116        .map(|x| x.map(|i| i.to_degrees()))
117        .collect();
118    lat.ok_or("finding root for Legendre polynomial failed")
119}
120
121/// Computes Gaussian latitudes in radians.
122///
123/// The Newton-Raphson method is used for the computation.
124/// If the computation does not converge and no solution is obtained after the
125/// predefined number of iterations (10), the solution will have the value
126/// `None`.
127///
128/// # Examples
129///
130/// ```
131/// let mut iter = grib::utils::compute_gaussian_latitudes(0);
132/// assert_eq!(iter.next(), None);
133///
134/// let mut iter = grib::utils::compute_gaussian_latitudes(1);
135/// assert_eq!(iter.next(), Some(Some(0.0)));
136/// assert_eq!(iter.next(), None);
137///
138/// let mut iter = grib::utils::compute_gaussian_latitudes(2);
139/// assert!((iter.next().unwrap().unwrap() - (1.0 / 3.0_f64.sqrt()).asin()).abs() < 1e-15);
140/// assert!((iter.next().unwrap().unwrap() - (-1.0 / 3.0_f64.sqrt()).asin()).abs() < 1e-15);
141/// assert_eq!(iter.next(), None);
142/// ```
143pub fn compute_gaussian_latitudes(div: usize) -> impl Iterator<Item = Option<f64>> {
144    legendre_roots_iterator(div).map(|x| x.map(|i| i.asin()))
145}
146
147// Finds roots (zero points) of the Legendre polynomial using Newton–Raphson
148// method.
149//
150// The implementation uses initial guess based on following papers:
151//
152// - Francesco G. Tricomi, Sugli zeri dei polinomi sferici ed ultrasferici,
153//   Annali di Matematica Pura ed Applicata, 31 (1950), pp. 93–97.
154// - F.G. Lether, P.R. Wenston, Minimax approximations to the zeros of Pn(x) and
155//   Gauss-Legendre quadrature, Journal of Computational and Applied Mathematics,
156//   Volume 59, Issue 2, 1995, Pages 245-252, ISSN 0377-0427, https://doi.org/10.1016/0377-0427(94)00030-5.
157fn legendre_roots_iterator(n: usize) -> impl Iterator<Item = Option<f64>> {
158    let coeff = 1.0_f64 - 1.0 / (8 * n * n) as f64 + 1.0 / (8 * n * n * n) as f64;
159    (0..n).map(move |i| {
160        let guess = coeff * ((4 * i + 3) as f64 * std::f64::consts::PI / (4 * n + 2) as f64).cos();
161        find_root(guess, |x| {
162            let (p_prev, p) = legendre_polynomial(n, x);
163            let fpx = legendre_polynomial_derivative(n, x, p_prev, p);
164            p / fpx
165        })
166    })
167}
168
169// `n` is assumed to be greater than or equal to 2.
170fn legendre_polynomial(n: usize, x: f64) -> (f64, f64) {
171    let mut p0 = 1.0;
172    let mut p1 = x;
173    for k in 2..=n {
174        let pk = ((2 * k - 1) as f64 * x * p1 - (k - 1) as f64 * p0) / k as f64;
175        p0 = p1;
176        p1 = pk;
177    }
178    (p0, p1)
179}
180
181fn legendre_polynomial_derivative(n: usize, x: f64, p_prev: f64, p: f64) -> f64 {
182    (n as f64 * (p_prev - x * p)) / (1.0 - x * x)
183}
184
185// Finds a root (zero point) of the given function using Newton–Raphson method.
186fn find_root<F>(initial_guess: f64, f: F) -> Option<f64>
187where
188    F: Fn(f64) -> f64,
189{
190    let mut count = MAX_ITER;
191    let mut x = initial_guess;
192    while count > 0 {
193        let dx = f(x);
194        x -= dx;
195        if dx.abs() < f64::EPSILON {
196            return Some(x);
197        }
198
199        count -= 1;
200    }
201    None
202}
203
204#[cfg(test)]
205mod tests {
206    use super::*;
207    use crate::grid::helpers::test_helpers::assert_almost_eq;
208
209    #[test]
210    fn latlon_computation_for_real_world_gaussian_grid_compared_with_results_from_eccodes(
211    ) -> Result<(), Box<dyn std::error::Error>> {
212        use std::io::Read;
213
214        let mut buf = Vec::new();
215
216        let f = std::fs::File::open("testdata/gdas.t00z.sfluxgrbf000.grib2.0.xz")?;
217        let f = std::io::BufReader::new(f);
218        let mut f = xz2::bufread::XzDecoder::new(f);
219        f.read_to_end(&mut buf)?;
220
221        let f = std::io::Cursor::new(buf);
222        let grib2 = crate::from_reader(f)?;
223
224        let ((_, _), first_submessage) = grib2
225            .submessages()
226            .next()
227            .ok_or_else(|| Box::<dyn std::error::Error>::from("first submessage not found"))?;
228        let grid_shape = first_submessage.grid_shape()?;
229        assert_eq!(grid_shape, (3072, 1536));
230
231        // Results from the following command line using ecCodes:
232        //
233        // ```
234        // xzcat testdata/gdas.t00z.sfluxgrbf000.grib2.0.xz \
235        //     | grib_get_data -m foo -L "%11.6f%11.6f" - \
236        //     | grep -v '^Latitude' | awk '{print $1;}' | uniq | head -160
237        // ```
238        let first_160_lats_expected = "
239                89.910325 89.794157 89.677304 89.560296 89.443229 89.326134 89.209022 89.091901
240                88.974774 88.857642 88.740506 88.623369 88.506229 88.389088 88.271946 88.154803
241                88.037660 87.920515 87.803370 87.686225 87.569079 87.451933 87.334787 87.217640
242                87.100493 86.983346 86.866199 86.749052 86.631904 86.514757 86.397609 86.280461
243                86.163313 86.046165 85.929017 85.811869 85.694721 85.577572 85.460424 85.343275
244                85.226127 85.108979 84.991830 84.874681 84.757533 84.640384 84.523236 84.406087
245                84.288938 84.171789 84.054641 83.937492 83.820343 83.703194 83.586045 83.468896
246                83.351747 83.234599 83.117450 83.000301 82.883152 82.766003 82.648854 82.531705
247                82.414556 82.297407 82.180258 82.063109 81.945960 81.828811 81.711662 81.594512
248                81.477363 81.360214 81.243065 81.125916 81.008767 80.891618 80.774469 80.657320
249                80.540171 80.423021 80.305872 80.188723 80.071574 79.954425 79.837276 79.720126
250                79.602977 79.485828 79.368679 79.251530 79.134381 79.017231 78.900082 78.782933
251                78.665784 78.548635 78.431485 78.314336 78.197187 78.080038 77.962888 77.845739
252                77.728590 77.611441 77.494292 77.377142 77.259993 77.142844 77.025695 76.908545
253                76.791396 76.674247 76.557098 76.439948 76.322799 76.205650 76.088501 75.971351
254                75.854202 75.737053 75.619904 75.502754 75.385605 75.268456 75.151306 75.034157
255                74.917008 74.799859 74.682709 74.565560 74.448411 74.331262 74.214112 74.096963
256                73.979814 73.862664 73.745515 73.628366 73.511217 73.394067 73.276918 73.159769
257                73.042619 72.925470 72.808321 72.691172 72.574022 72.456873 72.339724 72.222574
258                72.105425 71.988276 71.871126 71.753977 71.636828 71.519679 71.402529 71.285380
259            ";
260        let first_160_lats_expected = first_160_lats_expected
261            .split_whitespace()
262            .filter_map(|s| s.parse::<f32>().ok());
263
264        let delta = 1.0e-6;
265        let first_160_lats = first_submessage
266            .latlons()?
267            .map(|(lat, _lon)| lat)
268            .step_by(3072)
269            .take(160);
270        for (actual, expected) in first_160_lats.zip(first_160_lats_expected) {
271            assert_almost_eq!(actual, expected, delta);
272        }
273
274        // Results from the following command line using ecCodes:
275        //
276        // ```
277        // xzcat testdata/gdas.t00z.sfluxgrbf000.grib2.0.xz \
278        //     | grib_get_data -m foo -L "%11.6f%11.6f" - \
279        //     | grep -v '^Latitude' | awk '{print $2;}' | head -160
280        // ```
281        let first_160_lons_expected = "
282                0.000000  0.117188  0.234375  0.351563  0.468750  0.585938  0.703125  0.820313
283                0.937500  1.054688  1.171875  1.289063  1.406250  1.523438  1.640625  1.757813
284                1.875000  1.992188  2.109375  2.226563  2.343750  2.460938  2.578125  2.695313
285                2.812500  2.929688  3.046875  3.164063  3.281250  3.398438  3.515625  3.632813
286                3.750000  3.867188  3.984375  4.101563  4.218750  4.335938  4.453125  4.570313
287                4.687500  4.804688  4.921875  5.039063  5.156250  5.273438  5.390625  5.507813
288                5.625000  5.742188  5.859375  5.976563  6.093750  6.210938  6.328125  6.445313
289                6.562500  6.679688  6.796875  6.914063  7.031250  7.148438  7.265625  7.382813
290                7.500000  7.617188  7.734375  7.851563  7.968750  8.085938  8.203125  8.320313
291                8.437500  8.554688  8.671875  8.789063  8.906250  9.023438  9.140625  9.257813
292                9.375000  9.492188  9.609375  9.726563  9.843750  9.960938  10.078125 10.195313
293                10.312500 10.429688 10.546875 10.664063 10.781250 10.898438 11.015625 11.132813
294                11.250000 11.367188 11.484375 11.601563 11.718750 11.835938 11.953125 12.070313
295                12.187500 12.304688 12.421875 12.539063 12.656250 12.773438 12.890625 13.007813
296                13.125000 13.242188 13.359375 13.476563 13.593750 13.710938 13.828125 13.945313
297                14.062500 14.179688 14.296875 14.414063 14.531250 14.648438 14.765625 14.882813
298                15.000000 15.117188 15.234375 15.351563 15.468750 15.585938 15.703125 15.820313
299                15.937500 16.054688 16.171875 16.289063 16.406250 16.523438 16.640625 16.757813
300                16.875000 16.992188 17.109375 17.226563 17.343750 17.460938 17.578125 17.695313
301                17.812500 17.929688 18.046875 18.164063 18.281250 18.398438 18.515625 18.632813
302                ";
303        let first_160_lons_expected = first_160_lons_expected
304            .split_whitespace()
305            .filter_map(|s| s.parse::<f32>().ok());
306
307        let delta = 2.0e-6;
308        let first_160_lons = first_submessage.latlons()?.map(|(_lat, lon)| lon).take(160);
309        for (actual, expected) in first_160_lons.zip(first_160_lons_expected) {
310            assert_almost_eq!(actual, expected, delta);
311        }
312
313        Ok(())
314    }
315
316    macro_rules! test_legendre_roots_iterator_with_analytical_solutions {
317        ($((
318            $name:ident,
319            $n:expr,
320            $expected:expr,
321        ),)*) => ($(
322            #[test]
323            fn $name() {
324                let actual = legendre_roots_iterator($n);
325                let expected = $expected.into_iter();
326                for (actual_val, expected_val) in actual.zip(expected) {
327                    assert!(actual_val.is_some());
328                    let actual_val = actual_val.unwrap();
329                    assert_almost_eq!(actual_val, expected_val, f64::EPSILON);
330                }
331            }
332        )*);
333    }
334
335    test_legendre_roots_iterator_with_analytical_solutions! {
336        (
337            legendre_roots_iterator_for_n_being_2_compared_with_analytical_solutions,
338            2,
339            vec![1.0 / 3.0_f64.sqrt(), -1.0 / 3.0_f64.sqrt()],
340        ),
341        (
342            legendre_roots_iterator_for_n_being_5_compared_with_analytical_solutions,
343            5,
344            vec![
345                (5.0_f64 + 2.0 * (10.0_f64 / 7.0).sqrt()).sqrt() / 3.0,
346                (5.0_f64 - 2.0 * (10.0_f64 / 7.0).sqrt()).sqrt() / 3.0,
347                0.0,
348                - (5.0_f64 - 2.0 * (10.0_f64 / 7.0).sqrt()).sqrt() / 3.0,
349                - (5.0_f64 + 2.0 * (10.0_f64 / 7.0).sqrt()).sqrt() / 3.0,
350            ],
351        ),
352    }
353
354    // Values are copied and pasted from ["Features for ERA-40 grids"](https://web.archive.org/web/20160925045844/http://rda.ucar.edu/datasets/common/ecmwf/ERA40/docs/std-transformations/dss_code_glwp.html).
355    #[test]
356    fn gaussian_latitudes_computation_compared_with_numerical_solutions() {
357        let n = 160;
358        let result = compute_gaussian_latitudes_in_degrees(n);
359        assert!(result.is_ok());
360
361        let actual = result.unwrap().into_iter().take(n / 2);
362        let expected = "
363                    +   89.1416,  88.0294,  86.9108,  85.7906,  84.6699,  83.5489,
364                    +   82.4278,  81.3066,  80.1853,  79.0640,  77.9426,  76.8212,
365                    +   75.6998,  74.5784,  73.4570,  72.3356,  71.2141,  70.0927,
366                    +   68.9712,  67.8498,  66.7283,  65.6069,  64.4854,  63.3639,
367                    +   62.2425,  61.1210,  59.9995,  58.8780,  57.7566,  56.6351,
368                    +   55.5136,  54.3921,  53.2707,  52.1492,  51.0277,  49.9062,
369                    +   48.7847,  47.6632,  46.5418,  45.4203,  44.2988,  43.1773,
370                    +   42.0558,  40.9343,  39.8129,  38.6914,  37.5699,  36.4484,
371                    +   35.3269,  34.2054,  33.0839,  31.9624,  30.8410,  29.7195,
372                    +   28.5980,  27.4765,  26.3550,  25.2335,  24.1120,  22.9905,
373                    +   21.8690,  20.7476,  19.6261,  18.5046,  17.3831,  16.2616,
374                    +   15.1401,  14.0186,  12.8971,  11.7756,  10.6542,   9.5327,
375                    +    8.4112,   7.2897,   6.1682,   5.0467,   3.9252,   2.8037,
376                    +    1.6822,   0.5607 /
377                    ";
378        let expected = expected
379            .split(&['+', ' ', ',', '\n', '/'])
380            .filter_map(|s| s.parse::<f64>().ok());
381
382        let delta = 1.0e-4;
383        for (actual_val, expected_val) in actual.zip(expected) {
384            assert_almost_eq!(actual_val, expected_val, delta);
385        }
386    }
387
388    #[test]
389    fn finding_root() {
390        let actual = find_root(1.0, |x| {
391            let fx = x * x - 2.0;
392            let fpx = x * 2.0;
393            fx / fpx
394        });
395        assert!(actual.is_some());
396        let expected = 1.41421356;
397        assert_almost_eq!(actual.unwrap(), expected, 1.0e-8)
398    }
399
400    #[test]
401    fn failure_to_find_root() {
402        let actual = find_root(1000.0, |x| {
403            let fx = x * x - 2.0;
404            let fpx = x * 2.0;
405            fx / fpx
406        });
407        assert!(actual.is_none());
408    }
409}