grib/grid/
gaussian.rs

1use super::{
2    helpers::{evenly_spaced_longitudes, RegularGridIterator},
3    GridPointIndexIterator, ScanningMode,
4};
5use crate::{
6    error::GribError,
7    helpers::{read_as, GribInt},
8};
9
10#[derive(Debug, PartialEq, Eq)]
11pub struct GaussianGridDefinition {
12    pub ni: u32,
13    pub nj: u32,
14    pub first_point_lat: i32,
15    pub first_point_lon: i32,
16    pub last_point_lat: i32,
17    pub last_point_lon: i32,
18    pub i_direction_inc: u32,
19    pub n: u32,
20    pub scanning_mode: ScanningMode,
21}
22
23const MAX_ITER: usize = 10;
24
25impl GaussianGridDefinition {
26    /// Returns the shape of the grid, i.e. a tuple of the number of grids in
27    /// the i and j directions.
28    pub fn grid_shape(&self) -> (usize, usize) {
29        (self.ni as usize, self.nj as usize)
30    }
31
32    /// Returns the grid type.
33    pub fn short_name(&self) -> &'static str {
34        "regular_gg"
35    }
36
37    /// Returns an iterator over `(i, j)` of grid points.
38    ///
39    /// Note that this is a low-level API and it is not checked that the number
40    /// of iterator iterations is consistent with the number of grid points
41    /// defined in the data.
42    pub fn ij(&self) -> Result<GridPointIndexIterator, GribError> {
43        if self.scanning_mode.has_unsupported_flags() {
44            let ScanningMode(mode) = self.scanning_mode;
45            return Err(GribError::NotSupported(format!("scanning mode {mode}")));
46        }
47
48        let iter =
49            GridPointIndexIterator::new(self.ni as usize, self.nj as usize, self.scanning_mode);
50        Ok(iter)
51    }
52
53    /// Returns an iterator over latitudes and longitudes of grid points in
54    /// degrees.
55    ///
56    /// Note that this is a low-level API and it is not checked that the number
57    /// of iterator iterations is consistent with the number of grid points
58    /// defined in the data.
59    pub fn latlons(&self) -> Result<RegularGridIterator, GribError> {
60        if !self.is_consistent_for_j() {
61            return Err(GribError::InvalidValueError(
62                "Latitudes for first/last grid points are not consistent with scanning mode"
63                    .to_owned(),
64            ));
65        }
66
67        let ij = self.ij()?;
68        let mut lat = compute_gaussian_latitudes_in_degrees(self.nj as usize)
69            .map_err(|e| GribError::Unknown(e.to_owned()))?;
70        if self.scanning_mode.scans_positively_for_j() {
71            lat.reverse()
72        };
73        let lat = lat.into_iter().map(|v| v as f32).collect();
74        let lon = evenly_spaced_longitudes(
75            self.first_point_lon,
76            self.last_point_lon,
77            (self.ni - 1) as usize,
78            self.scanning_mode,
79        );
80
81        let iter = RegularGridIterator::new(lat, lon, ij);
82        Ok(iter)
83    }
84
85    pub(crate) fn is_consistent_for_j(&self) -> bool {
86        let lat_diff = self.last_point_lat - self.first_point_lat;
87        !((lat_diff > 0) ^ self.scanning_mode.scans_positively_for_j())
88    }
89
90    pub(crate) fn from_buf(buf: &[u8]) -> Self {
91        let ni = read_as!(u32, buf, 0);
92        let nj = read_as!(u32, buf, 4);
93        let first_point_lat = read_as!(u32, buf, 16).as_grib_int();
94        let first_point_lon = read_as!(u32, buf, 20).as_grib_int();
95        let last_point_lat = read_as!(u32, buf, 25).as_grib_int();
96        let last_point_lon = read_as!(u32, buf, 29).as_grib_int();
97        let i_direction_inc = read_as!(u32, buf, 33);
98        let n = read_as!(u32, buf, 37);
99        let scanning_mode = read_as!(u8, buf, 41);
100        Self {
101            ni,
102            nj,
103            first_point_lat,
104            first_point_lon,
105            last_point_lat,
106            last_point_lon,
107            i_direction_inc,
108            n,
109            scanning_mode: ScanningMode(scanning_mode),
110        }
111    }
112}
113
114fn compute_gaussian_latitudes_in_degrees(div: usize) -> Result<Vec<f64>, &'static str> {
115    let lat: Option<Vec<_>> = compute_gaussian_latitudes(div)
116        .map(|x| x.map(|i| i.to_degrees()))
117        .collect();
118    lat.ok_or("finding root for Legendre polynomial failed")
119}
120
121/// Computes Gaussian latitudes in radians.
122///
123/// The Newton-Raphson method is used for the computation.
124/// If the computation does not converge and no solution is obtained after the
125/// predefined number of iterations (10), the solution will have the value
126/// `None`.
127///
128/// # Examples
129///
130/// ```
131/// let mut iter = grib::utils::compute_gaussian_latitudes(0);
132/// assert_eq!(iter.next(), None);
133///
134/// let mut iter = grib::utils::compute_gaussian_latitudes(1);
135/// assert_eq!(iter.next(), Some(Some(0.0)));
136/// assert_eq!(iter.next(), None);
137///
138/// let mut iter = grib::utils::compute_gaussian_latitudes(2);
139/// assert!((iter.next().unwrap().unwrap() - (1.0 / 3.0_f64.sqrt()).asin()).abs() < 1e-15);
140/// assert!((iter.next().unwrap().unwrap() - (-1.0 / 3.0_f64.sqrt()).asin()).abs() < 1e-15);
141/// assert_eq!(iter.next(), None);
142/// ```
143pub fn compute_gaussian_latitudes(div: usize) -> impl Iterator<Item = Option<f64>> {
144    legendre_roots_iterator(div).map(|x| x.map(|i| i.asin()))
145}
146
147// Finds roots (zero points) of the Legendre polynomial using Newton–Raphson
148// method.
149//
150// The implementation uses initial guess based on following papers:
151//
152// - Francesco G. Tricomi, Sugli zeri dei polinomi sferici ed ultrasferici,
153//   Annali di Matematica Pura ed Applicata, 31 (1950), pp. 93–97.
154// - F.G. Lether, P.R. Wenston, Minimax approximations to the zeros of Pn(x) and
155//   Gauss-Legendre quadrature, Journal of Computational and Applied Mathematics,
156//   Volume 59, Issue 2, 1995, Pages 245-252, ISSN 0377-0427, https://doi.org/10.1016/0377-0427(94)00030-5.
157fn legendre_roots_iterator(n: usize) -> impl Iterator<Item = Option<f64>> {
158    let coeff = 1.0_f64 - 1.0 / (8 * n * n) as f64 + 1.0 / (8 * n * n * n) as f64;
159    (0..n).map(move |i| {
160        let guess = coeff * ((4 * i + 3) as f64 * std::f64::consts::PI / (4 * n + 2) as f64).cos();
161        find_root(guess, |x| {
162            let (p_prev, p) = legendre_polynomial(n, x);
163            let fpx = legendre_polynomial_derivative(n, x, p_prev, p);
164            p / fpx
165        })
166    })
167}
168
169// `n` is assumed to be greater than or equal to 2.
170fn legendre_polynomial(n: usize, x: f64) -> (f64, f64) {
171    let mut p0 = 1.0;
172    let mut p1 = x;
173    for k in 2..=n {
174        let pk = ((2 * k - 1) as f64 * x * p1 - (k - 1) as f64 * p0) / k as f64;
175        p0 = p1;
176        p1 = pk;
177    }
178    (p0, p1)
179}
180
181fn legendre_polynomial_derivative(n: usize, x: f64, p_prev: f64, p: f64) -> f64 {
182    (n as f64 * (p_prev - x * p)) / (1.0 - x * x)
183}
184
185// Finds a root (zero point) of the given function using Newton–Raphson method.
186fn find_root<F>(initial_guess: f64, f: F) -> Option<f64>
187where
188    F: Fn(f64) -> f64,
189{
190    let mut count = MAX_ITER;
191    let mut x = initial_guess;
192    loop {
193        let dx = f(x);
194        x -= dx;
195        if dx.abs() < f64::EPSILON {
196            break;
197        }
198
199        if count > 0 {
200            count -= 1;
201        } else {
202            return None;
203        }
204    }
205    Some(x)
206}
207
208#[cfg(test)]
209mod tests {
210    use super::*;
211    use crate::grid::helpers::test_helpers::assert_almost_eq;
212
213    #[test]
214    fn latlon_computation_for_real_world_gaussian_grid_compared_with_results_from_eccodes(
215    ) -> Result<(), Box<dyn std::error::Error>> {
216        use std::io::Read;
217
218        let mut buf = Vec::new();
219
220        let f = std::fs::File::open("testdata/gdas.t00z.sfluxgrbf000.grib2.0.xz")?;
221        let f = std::io::BufReader::new(f);
222        let mut f = xz2::bufread::XzDecoder::new(f);
223        f.read_to_end(&mut buf)?;
224
225        let f = std::io::Cursor::new(buf);
226        let grib2 = crate::from_reader(f)?;
227
228        let ((_, _), first_submessage) = grib2
229            .submessages()
230            .next()
231            .ok_or_else(|| Box::<dyn std::error::Error>::from("first submessage not found"))?;
232        let grid_shape = first_submessage.grid_shape()?;
233        assert_eq!(grid_shape, (3072, 1536));
234
235        // Results from the following command line using ecCodes:
236        //
237        // ```
238        // xzcat testdata/gdas.t00z.sfluxgrbf000.grib2.0.xz \
239        //     | grib_get_data -m foo -L "%11.6f%11.6f" - \
240        //     | grep -v '^Latitude' | awk '{print $1;}' | uniq | head -160
241        // ```
242        let first_160_lats_expected = "
243                89.910325 89.794157 89.677304 89.560296 89.443229 89.326134 89.209022 89.091901
244                88.974774 88.857642 88.740506 88.623369 88.506229 88.389088 88.271946 88.154803
245                88.037660 87.920515 87.803370 87.686225 87.569079 87.451933 87.334787 87.217640
246                87.100493 86.983346 86.866199 86.749052 86.631904 86.514757 86.397609 86.280461
247                86.163313 86.046165 85.929017 85.811869 85.694721 85.577572 85.460424 85.343275
248                85.226127 85.108979 84.991830 84.874681 84.757533 84.640384 84.523236 84.406087
249                84.288938 84.171789 84.054641 83.937492 83.820343 83.703194 83.586045 83.468896
250                83.351747 83.234599 83.117450 83.000301 82.883152 82.766003 82.648854 82.531705
251                82.414556 82.297407 82.180258 82.063109 81.945960 81.828811 81.711662 81.594512
252                81.477363 81.360214 81.243065 81.125916 81.008767 80.891618 80.774469 80.657320
253                80.540171 80.423021 80.305872 80.188723 80.071574 79.954425 79.837276 79.720126
254                79.602977 79.485828 79.368679 79.251530 79.134381 79.017231 78.900082 78.782933
255                78.665784 78.548635 78.431485 78.314336 78.197187 78.080038 77.962888 77.845739
256                77.728590 77.611441 77.494292 77.377142 77.259993 77.142844 77.025695 76.908545
257                76.791396 76.674247 76.557098 76.439948 76.322799 76.205650 76.088501 75.971351
258                75.854202 75.737053 75.619904 75.502754 75.385605 75.268456 75.151306 75.034157
259                74.917008 74.799859 74.682709 74.565560 74.448411 74.331262 74.214112 74.096963
260                73.979814 73.862664 73.745515 73.628366 73.511217 73.394067 73.276918 73.159769
261                73.042619 72.925470 72.808321 72.691172 72.574022 72.456873 72.339724 72.222574
262                72.105425 71.988276 71.871126 71.753977 71.636828 71.519679 71.402529 71.285380
263            ";
264        let first_160_lats_expected = first_160_lats_expected
265            .split_whitespace()
266            .filter_map(|s| s.parse::<f32>().ok());
267
268        let delta = 1.0e-6;
269        let first_160_lats = first_submessage
270            .latlons()?
271            .map(|(lat, _lon)| lat)
272            .step_by(3072)
273            .take(160);
274        for (actual, expected) in first_160_lats.zip(first_160_lats_expected) {
275            assert_almost_eq!(actual, expected, delta);
276        }
277
278        // Results from the following command line using ecCodes:
279        //
280        // ```
281        // xzcat testdata/gdas.t00z.sfluxgrbf000.grib2.0.xz \
282        //     | grib_get_data -m foo -L "%11.6f%11.6f" - \
283        //     | grep -v '^Latitude' | awk '{print $2;}' | head -160
284        // ```
285        let first_160_lons_expected = "
286                0.000000  0.117188  0.234375  0.351563  0.468750  0.585938  0.703125  0.820313
287                0.937500  1.054688  1.171875  1.289063  1.406250  1.523438  1.640625  1.757813
288                1.875000  1.992188  2.109375  2.226563  2.343750  2.460938  2.578125  2.695313
289                2.812500  2.929688  3.046875  3.164063  3.281250  3.398438  3.515625  3.632813
290                3.750000  3.867188  3.984375  4.101563  4.218750  4.335938  4.453125  4.570313
291                4.687500  4.804688  4.921875  5.039063  5.156250  5.273438  5.390625  5.507813
292                5.625000  5.742188  5.859375  5.976563  6.093750  6.210938  6.328125  6.445313
293                6.562500  6.679688  6.796875  6.914063  7.031250  7.148438  7.265625  7.382813
294                7.500000  7.617188  7.734375  7.851563  7.968750  8.085938  8.203125  8.320313
295                8.437500  8.554688  8.671875  8.789063  8.906250  9.023438  9.140625  9.257813
296                9.375000  9.492188  9.609375  9.726563  9.843750  9.960938  10.078125 10.195313
297                10.312500 10.429688 10.546875 10.664063 10.781250 10.898438 11.015625 11.132813
298                11.250000 11.367188 11.484375 11.601563 11.718750 11.835938 11.953125 12.070313
299                12.187500 12.304688 12.421875 12.539063 12.656250 12.773438 12.890625 13.007813
300                13.125000 13.242188 13.359375 13.476563 13.593750 13.710938 13.828125 13.945313
301                14.062500 14.179688 14.296875 14.414063 14.531250 14.648438 14.765625 14.882813
302                15.000000 15.117188 15.234375 15.351563 15.468750 15.585938 15.703125 15.820313
303                15.937500 16.054688 16.171875 16.289063 16.406250 16.523438 16.640625 16.757813
304                16.875000 16.992188 17.109375 17.226563 17.343750 17.460938 17.578125 17.695313
305                17.812500 17.929688 18.046875 18.164063 18.281250 18.398438 18.515625 18.632813
306                ";
307        let first_160_lons_expected = first_160_lons_expected
308            .split_whitespace()
309            .filter_map(|s| s.parse::<f32>().ok());
310
311        let delta = 2.0e-6;
312        let first_160_lons = first_submessage.latlons()?.map(|(_lat, lon)| lon).take(160);
313        for (actual, expected) in first_160_lons.zip(first_160_lons_expected) {
314            assert_almost_eq!(actual, expected, delta);
315        }
316
317        Ok(())
318    }
319
320    macro_rules! test_legendre_roots_iterator_with_analytical_solutions {
321        ($((
322            $name:ident,
323            $n:expr,
324            $expected:expr,
325        ),)*) => ($(
326            #[test]
327            fn $name() {
328                let actual = legendre_roots_iterator($n);
329                let expected = $expected.into_iter();
330                for (actual_val, expected_val) in actual.zip(expected) {
331                    assert!(actual_val.is_some());
332                    let actual_val = actual_val.unwrap();
333                    assert_almost_eq!(actual_val, expected_val, f64::EPSILON);
334                }
335            }
336        )*);
337    }
338
339    test_legendre_roots_iterator_with_analytical_solutions! {
340        (
341            legendre_roots_iterator_for_n_being_2_compared_with_analytical_solutions,
342            2,
343            vec![1.0 / 3.0_f64.sqrt(), -1.0 / 3.0_f64.sqrt()],
344        ),
345        (
346            legendre_roots_iterator_for_n_being_5_compared_with_analytical_solutions,
347            5,
348            vec![
349                (5.0_f64 + 2.0 * (10.0_f64 / 7.0).sqrt()).sqrt() / 3.0,
350                (5.0_f64 - 2.0 * (10.0_f64 / 7.0).sqrt()).sqrt() / 3.0,
351                0.0,
352                - (5.0_f64 - 2.0 * (10.0_f64 / 7.0).sqrt()).sqrt() / 3.0,
353                - (5.0_f64 + 2.0 * (10.0_f64 / 7.0).sqrt()).sqrt() / 3.0,
354            ],
355        ),
356    }
357
358    // Values are copied and pasted from ["Features for ERA-40 grids"](https://web.archive.org/web/20160925045844/http://rda.ucar.edu/datasets/common/ecmwf/ERA40/docs/std-transformations/dss_code_glwp.html).
359    #[test]
360    fn gaussian_latitudes_computation_compared_with_numerical_solutions() {
361        let n = 160;
362        let result = compute_gaussian_latitudes_in_degrees(n);
363        assert!(result.is_ok());
364
365        let actual = result.unwrap().into_iter().take(n / 2);
366        let expected = "
367                    +   89.1416,  88.0294,  86.9108,  85.7906,  84.6699,  83.5489,
368                    +   82.4278,  81.3066,  80.1853,  79.0640,  77.9426,  76.8212,
369                    +   75.6998,  74.5784,  73.4570,  72.3356,  71.2141,  70.0927,
370                    +   68.9712,  67.8498,  66.7283,  65.6069,  64.4854,  63.3639,
371                    +   62.2425,  61.1210,  59.9995,  58.8780,  57.7566,  56.6351,
372                    +   55.5136,  54.3921,  53.2707,  52.1492,  51.0277,  49.9062,
373                    +   48.7847,  47.6632,  46.5418,  45.4203,  44.2988,  43.1773,
374                    +   42.0558,  40.9343,  39.8129,  38.6914,  37.5699,  36.4484,
375                    +   35.3269,  34.2054,  33.0839,  31.9624,  30.8410,  29.7195,
376                    +   28.5980,  27.4765,  26.3550,  25.2335,  24.1120,  22.9905,
377                    +   21.8690,  20.7476,  19.6261,  18.5046,  17.3831,  16.2616,
378                    +   15.1401,  14.0186,  12.8971,  11.7756,  10.6542,   9.5327,
379                    +    8.4112,   7.2897,   6.1682,   5.0467,   3.9252,   2.8037,
380                    +    1.6822,   0.5607 /
381                    ";
382        let expected = expected
383            .split(&['+', ' ', ',', '\n', '/'])
384            .filter_map(|s| s.parse::<f64>().ok());
385
386        let delta = 1.0e-4;
387        for (actual_val, expected_val) in actual.zip(expected) {
388            assert_almost_eq!(actual_val, expected_val, delta);
389        }
390    }
391
392    #[test]
393    fn finding_root() {
394        let actual = find_root(1.0, |x| {
395            let fx = x * x - 2.0;
396            let fpx = x * 2.0;
397            fx / fpx
398        });
399        assert!(actual.is_some());
400        let expected = 1.41421356;
401        assert_almost_eq!(actual.unwrap(), expected, 1.0e-8)
402    }
403
404    #[test]
405    fn failure_to_find_root() {
406        let actual = find_root(1000.0, |x| {
407            let fx = x * x - 2.0;
408            let fpx = x * 2.0;
409            fx / fpx
410        });
411        assert!(actual.is_none());
412    }
413}