1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
use super::{earth::EarthShapeDefinition, GridPointIndexIterator, ScanningMode};
use crate::{
error::GribError,
helpers::{read_as, GribInt},
ProjectionCentreFlag,
};
#[derive(Debug, PartialEq, Eq)]
pub struct PolarStereographicGridDefinition {
pub earth_shape: EarthShapeDefinition,
pub ni: u32,
pub nj: u32,
pub first_point_lat: i32,
pub first_point_lon: i32,
pub lad: i32,
pub lov: i32,
pub dx: u32,
pub dy: u32,
pub projection_centre: ProjectionCentreFlag,
pub scanning_mode: ScanningMode,
}
impl PolarStereographicGridDefinition {
/// Returns the shape of the grid, i.e. a tuple of the number of grids in
/// the i and j directions.
///
/// Examples
///
/// ```
/// let def = grib::PolarStereographicGridDefinition {
/// earth_shape: grib::EarthShapeDefinition {
/// shape_of_the_earth: 6,
/// scale_factor_of_radius_of_spherical_earth: 0xff,
/// scaled_value_of_radius_of_spherical_earth: 0xffffffff,
/// scale_factor_of_earth_major_axis: 0xff,
/// scaled_value_of_earth_major_axis: 0xffffffff,
/// scale_factor_of_earth_minor_axis: 0xff,
/// scaled_value_of_earth_minor_axis: 0xffffffff,
/// },
/// ni: 2,
/// nj: 3,
/// first_point_lat: 0,
/// first_point_lon: 0,
/// lad: 0,
/// lov: 0,
/// dx: 1000,
/// dy: 1000,
/// projection_centre: grib::ProjectionCentreFlag(0b00000000),
/// scanning_mode: grib::ScanningMode(0b01000000),
/// };
/// let shape = def.grid_shape();
/// assert_eq!(shape, (2, 3));
/// ```
pub fn grid_shape(&self) -> (usize, usize) {
(self.ni as usize, self.nj as usize)
}
/// Returns the grid type.
pub fn short_name(&self) -> &'static str {
"polar_stereographic"
}
/// Returns an iterator over `(i, j)` of grid points.
///
/// Note that this is a low-level API and it is not checked that the number
/// of iterator iterations is consistent with the number of grid points
/// defined in the data.
///
/// Examples
///
/// ```
/// let def = grib::PolarStereographicGridDefinition {
/// earth_shape: grib::EarthShapeDefinition {
/// shape_of_the_earth: 6,
/// scale_factor_of_radius_of_spherical_earth: 0xff,
/// scaled_value_of_radius_of_spherical_earth: 0xffffffff,
/// scale_factor_of_earth_major_axis: 0xff,
/// scaled_value_of_earth_major_axis: 0xffffffff,
/// scale_factor_of_earth_minor_axis: 0xff,
/// scaled_value_of_earth_minor_axis: 0xffffffff,
/// },
/// ni: 2,
/// nj: 3,
/// first_point_lat: 0,
/// first_point_lon: 0,
/// lad: 0,
/// lov: 0,
/// dx: 1000,
/// dy: 1000,
/// projection_centre: grib::ProjectionCentreFlag(0b00000000),
/// scanning_mode: grib::ScanningMode(0b01000000),
/// };
/// let ij = def.ij();
/// assert!(ij.is_ok());
///
/// let mut ij = ij.unwrap();
/// assert_eq!(ij.next(), Some((0, 0)));
/// assert_eq!(ij.next(), Some((1, 0)));
/// assert_eq!(ij.next(), Some((0, 1)));
/// ```
pub fn ij(&self) -> Result<GridPointIndexIterator, GribError> {
if self.scanning_mode.has_unsupported_flags() {
let ScanningMode(mode) = self.scanning_mode;
return Err(GribError::NotSupported(format!("scanning mode {mode}")));
}
let iter =
GridPointIndexIterator::new(self.ni as usize, self.nj as usize, self.scanning_mode);
Ok(iter)
}
/// Returns an iterator over latitudes and longitudes of grid points in
/// degrees.
///
/// Note that this is a low-level API and it is not checked that the number
/// of iterator iterations is consistent with the number of grid points
/// defined in the data.
#[cfg(feature = "gridpoints-proj")]
pub fn latlons(&self) -> Result<std::vec::IntoIter<(f32, f32)>, GribError> {
let lad = self.lad as f64 * 1e-6;
let lov = self.lov as f64 * 1e-6;
let (a, b) = self.earth_shape.radii().ok_or_else(|| {
GribError::NotSupported(format!(
"unknown value of Code Table 3.2 (shape of the Earth): {}",
self.earth_shape.shape_of_the_earth
))
})?;
if self.projection_centre.has_unsupported_flags() {
let ProjectionCentreFlag(flag) = self.projection_centre;
return Err(GribError::NotSupported(format!("projection centre {flag}")));
}
let lat_origin = if self
.projection_centre
.contains_north_pole_on_projection_plane()
{
90.
} else {
-90.
};
let proj_def =
format!("+a={a} +b={b} +proj=stere +lat_ts={lad} +lat_0={lat_origin} +lon_0={lov}");
let dx = self.dx as f64 * 1e-3;
let dy = self.dy as f64 * 1e-3;
let dx = if !self.scanning_mode.scans_positively_for_i() && dx > 0. {
-dx
} else {
dx
};
let dy = if !self.scanning_mode.scans_positively_for_j() && dy > 0. {
-dy
} else {
dy
};
super::helpers::latlons_from_projection_definition_and_first_point(
&proj_def,
(
self.first_point_lat as f64 * 1e-6,
self.first_point_lon as f64 * 1e-6,
),
(dx, dy),
self.ij()?,
)
}
pub(crate) fn from_buf(buf: &[u8]) -> Self {
let earth_shape = EarthShapeDefinition::from_buf(buf);
let ni = read_as!(u32, buf, 16);
let nj = read_as!(u32, buf, 20);
let first_point_lat = read_as!(u32, buf, 24).as_grib_int();
let first_point_lon = read_as!(u32, buf, 28).as_grib_int();
let lad = read_as!(u32, buf, 33).as_grib_int();
let lov = read_as!(u32, buf, 37).as_grib_int();
let dx = read_as!(u32, buf, 41);
let dy = read_as!(u32, buf, 45);
let projection_centre = read_as!(u8, buf, 49);
let scanning_mode = read_as!(u8, buf, 50);
Self {
earth_shape,
ni,
nj,
first_point_lat,
first_point_lon,
lad,
lov,
dx,
dy,
projection_centre: ProjectionCentreFlag(projection_centre),
scanning_mode: ScanningMode(scanning_mode),
}
}
}
#[cfg(test)]
mod tests {
use std::io::{BufReader, Read};
use super::*;
#[test]
fn polar_stereographic_grid_definition_from_buf() -> Result<(), Box<dyn std::error::Error>> {
let mut buf = Vec::new();
let f = std::fs::File::open(
"testdata/CMC_RDPA_APCP-024-0100cutoff_SFC_0_ps10km_2023121806_000.grib2.xz",
)?;
let f = BufReader::new(f);
let mut f = xz2::bufread::XzDecoder::new(f);
f.read_to_end(&mut buf)?;
let actual = PolarStereographicGridDefinition::from_buf(&buf[0x33..]);
let expected = PolarStereographicGridDefinition {
earth_shape: EarthShapeDefinition {
shape_of_the_earth: 6,
scale_factor_of_radius_of_spherical_earth: 0xff,
scaled_value_of_radius_of_spherical_earth: 0xffffffff,
scale_factor_of_earth_major_axis: 0xff,
scaled_value_of_earth_major_axis: 0xffffffff,
scale_factor_of_earth_minor_axis: 0xff,
scaled_value_of_earth_minor_axis: 0xffffffff,
},
ni: 935,
nj: 824,
first_point_lat: 18145030,
first_point_lon: 217107456,
lad: 60000000,
lov: 249000000,
dx: 10000000,
dy: 10000000,
projection_centre: ProjectionCentreFlag(0b00000000),
scanning_mode: ScanningMode(0b01000000),
};
assert_eq!(actual, expected);
Ok(())
}
#[cfg(feature = "gridpoints-proj")]
#[test]
fn polar_stereographic_grid_latlon_computation() -> Result<(), Box<dyn std::error::Error>> {
use crate::grid::helpers::test_helpers::assert_coord_almost_eq;
let grid_def = PolarStereographicGridDefinition {
earth_shape: EarthShapeDefinition {
shape_of_the_earth: 6,
scale_factor_of_radius_of_spherical_earth: 0xff,
scaled_value_of_radius_of_spherical_earth: 0xffffffff,
scale_factor_of_earth_major_axis: 0xff,
scaled_value_of_earth_major_axis: 0xffffffff,
scale_factor_of_earth_minor_axis: 0xff,
scaled_value_of_earth_minor_axis: 0xffffffff,
},
ni: 935,
nj: 824,
first_point_lat: 18145030,
first_point_lon: 217107456,
lad: 60000000,
lov: 249000000,
dx: 10000000,
dy: 10000000,
projection_centre: ProjectionCentreFlag(0b00000000),
scanning_mode: ScanningMode(0b01000000),
};
let latlons = grid_def.latlons()?.collect::<Vec<_>>();
// Following lat/lon values are taken from the calculation results using pygrib.
let delta = 1e-10;
assert_coord_almost_eq(latlons[0], (18.14503, -142.892544), delta);
assert_coord_almost_eq(latlons[1], (18.17840149, -142.83604096), delta);
assert_coord_almost_eq(
latlons[latlons.len() - 2],
(45.4865147, -10.15230394),
delta,
);
assert_coord_almost_eq(
latlons[latlons.len() - 1],
(45.40545211, -10.17442147),
delta,
);
Ok(())
}
}